

What Do You Do
After You See the Dollar Sign?

Advanced Systems Concepts, Inc.
1180 Headquarters Plaza
West Tower, Third Floor
Morristown, NJ 07960
United States
Phone: +1-973-539-2660
Fax: +1-973-539-3390
Web: www.advsyscon.com

A Getting Started Guide to the XLNT Language

XLNT Getting Started Guide

Fifth Printing: July 2014
Fourth Printing: November 2012
Third Printing: March 2006
Second Printing: May 2001
First Printing: September, 1997

The information in this document is subject to change without notice and should
not be construed as a commitment by Advanced Systems Concepts, Inc. (ASCI).
ASCI assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under license, and may
only be used or copied in accordance with the terms of such license. The terms
and conditions of license are furnished with the product in both hard copy as well
as electronic form.

ASCI logo and XLNT are registered trademarks of Advanced Systems Concepts,
Inc.

ASCI and XLNT logo are trademarks of Advanced Systems Concepts, Inc.

All other trademarks and registered trademarks are the property of their
respective holders.

Copyright © 1997-2014 Advanced Systems Concepts, Inc., Morristown, New
Jersey 07960, United States. All Rights Reserved.

No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording or by any
information storage and retrieval system, without the written permission of
Advanced Systems Concepts, Inc.

XLNT Getting Started Guide

XLNT Getting Started Guide

Welcome

Welcome to XLNT!

If you’ve followed the instructions to install and start the
product, you should now be staring at an empty console
window, on which is displayed a dollar sign ($). A
question you may have at this point is “What do I do,
now?”.

What you do now is the subject of this guide…

Page | 1

XLNT Getting Started Guide

A Quick Overview

XLNT, the eXtended Language for Windows NT, is a software product
engineered by Advanced Systems Concepts, Inc. for the Windows
marketplace. It provides a powerful, but easy to use scripting language that
simplifies the development of command-line and batch interfaces for the
users of these operating systems. XLNT eases the pain in tasks such as
Remote Systems Administration, File Maintenance, CGI Development, Ad-
hoc programming and Event Scheduling.

Using XLNT

The XLNT command interpreter is installed as a standard Windows desktop
application:

Page | 2

XLNT Getting Started Guide

When you click on its icon, a console window is activated. After a brief
period of initialization, XLNT will prompt you for input. By default, the
prompt is the dollar sign character, followed by a blank space:

When the prompt string appears, XLNT is waiting for you to tell it to do
something. This is accomplished by typing an XLNT command. For
example, if you wish to know the current date and time, enter the SHOW
TIME command:

$ show time

XLNT responds to this command by displaying the current day of the week,
date and time in the following format:

Fri 06-May-2001 07:59:04.955

XLNT provides many commands. One of them, SET PROMPT, allows you
to change the prompt string. If you want to be prompted by the string
“XLNT> “, rather than $, enter the following:

$ set prompt “XLNT> “

Notice that the prompt changed immediately after you issued the command:

Page | 3

XLNT Getting Started Guide

When you enter a command, XLNT will accept it, validate it and, based
upon the results of
these

actions, either execute or reject it. If successfully executed, the output of
the command will appear directly on your console or to wherever else you
have directed it. The SHOW SYSTEM command displays the current
status of your Windows system.

Page | 4

XLNT Getting Started Guide

Page | 5

XLNT Getting Started Guide

If your command is rejected, a specific error message will appear, detailing
the reasons for the rejection. XLNT messages follow a standard pattern:

FACILITY-S-MSGID, text

where:

FACILITY indicates the component of the product that is generating
the error; in most cases, the facility name will be XLNT.

S is a single character indicating the message’s severity level. It will
be one of the following:

E - Error (most severe status)
W - Warning
 I - Informational
 S - Success

Generally, success and informational messages won’t be displayed.

MSGID is a short string that uniquely identifies the message.

Text is the full explanatory text of the message.

Typing an invalid command, for example, will result in the following:

XLNT will continue to prompt you for commands and execute them until you
enter the LOGOUT command. When you do, the command interpreter
process will exit and the console window will be removed from your desktop.

Page | 6

XLNT Getting Started Guide

When operating in this manner, you are at the XLNT interactive prompt
level. After using the product for a while, you will probably find yourself
executing the same sequence of commands over and over. Since this can
quickly become tedious, XLNT allows you to store command sequences
within a text file and “play” them back at a later time, just as if you were
entering them at the command prompt. This text file is called an XLNT
command procedure. Command procedures provide a great deal of power
and flexibility.

Use your favorite text editor to create a command procedure. By convention,
the file’s extension should be .xcp, for XLNT Command Procedure. When
running a command procedure, XLNT will assume the .xcp extension if it is
not provided. The actual mechanics of command procedures are discussed in
a later section, however, we will now present some typical uses of
procedures.

An area of concern to system administrators is the management of disk
space. Gathering information on the use of your hard disks can be extremely
time consuming. XLNT provides functions that can ease this task. A
command procedure can be developed to scan a hard disk and display the
name of each file, its owner, and its size, providing a gross look at how the
disk is being consumed. If you were to name such a procedure showuse.xcp
and you want to use it to look at your “C” drive, the command to run it would
be:

$ @showuse c:

A portion of the output generated by this command follows:

File: C:\ASCI Owner: Administrators Size: 0
File: C:\AUTOEXEC.BAT Owner: Administrators Size: 0
File: C:\BOOT.BAK Owner: Administrators Size: 485
File: C:\BOOT.INI Owner: Administrators Size: 480
File: C:\BOOTSECT.DOS Owner: Administrators Size: 512
File: C:\FONTS.DOC Owner: Administrators Size: 11776
 .
 .
 .

Now, let’s take a look at the contents of the command procedure:

$!
$! Command Procedure to display disk usage
$!
$ loop:

Page | 7

XLNT Getting Started Guide

$ fname = f$search (“’’P1’\…*.*”, ctx)
$ if fname .eqs. “” then goto finish
$ owner = f$file_attributes (fname, “MBM”)
$ size = f$file_attributes (fname, “ALQ”)
$ write $stdout “File: ‘’fname’ Owner: ‘’owner’ Size: ‘’size’”
$ goto loop
$ finish:
$ exit

The procedure makes use of several features that are available within XLNT.
It accepts an argument (the device name) so that you will not need a separate
procedure for each disk you want to scan. Since it is the first parameter on
the command line, the argument is referred to by the symbol P1. The
procedure then enters a simple loop, looking at each file on the disk. The
f$search lexical function then returns a string containing the full name of the
next file in the specified directory. (Lexical functions are built-in XLNT
routines that can be invoked by command procedures to perform many useful
functions - see section on Lexical Functions.) The procedure uses a wild-card
specification to look at every directory on the disk. The f$file_attributes
lexical is used to retrieve various items of interest about a specific file. In
this case, the owner name (as defined by the “MBM” item code) and the file’s
size or allocation quantity (as defined by the “ALQ” item code) are retrieved.
When this information is obtained, it is displayed on the standard output
device and the procedure loops back for the next file. When f$search returns
a null string, all the files on the disk have been scanned.

To use the showuse.xcp procedure on another drive, just change the device
letter:

$ @showuse d:

Now that you have the gross usage of the device, you might want to narrow
your focus to individual users. To do that, we can modify the preceding
command procedure to look for files owned by a specific user. Let’s say we
call this new procedure showowner.xcp. It will accept two arguments: the
name of the device you wish to search, and the name of the user you want to
scan for. If we want to search the C disk for all files owned by user jjones,
the command would be:

$ @showowner c: jjones

A portion of the output produced by this procedure follows:

Disk Usage on C: by jjones
File: C:\TESTAPP\TESTAPP.CPP Size: 10648

Page | 8

XLNT Getting Started Guide

File C:\TESTAPP\TESTAPP.RC Size: 3068
File: C:\TESTAPP\TESTAPP.RES Size:
File: C:\TESTAPP\README.TXT Size
 .
 .
 .

The showowner.xcp command procedure looks like this:

$!
$! Command Procedure to Display Disk Usage by Owner
$!
$ requested_owner = P2
$ file_count = 0
$ total_size = 0
$ write $stdout “Disk Usage on ‘’P1’ by ‘’requested_owner’”
$ fname = f$search (“’’P1’\…*.*”, ctx)
$ while fname .nes. “”
$ owner = f$file_attributes (fname, “MBM”)
$ If owner .eqs. requested_owner
$ then
$ size = f$file_attributes (fname, “ALQ”)
$ write $stdout “File: ‘’fname’ Size: ‘’size’”
$ file_count = file_count + 1
$ total_size = total_size + size
$ endif
$ fname = f$search (“’’P1’\…*.*”, ctx)
$ endwhile
$ if file_count .gt. 0
$ then
$ write $stdout “Number of Files: ‘’file_count’”
$ write $stdout “Total Size : ‘’total_size’”
$ endif
$ exit

This procedure will accept two arguments: the device letter (P1) and the
user name (P2). As each file name is retrieved, its owner’s name is compared
to that requested. If equal, the file’s name and size are displayed. Note that
in this command procedure, the looping mechanism is performed by the
WHILE/ENDWHILE statements. The WHILE command will repetitively
execute the commands within its block as long as the specified condition is
true. In this case, the loop will be performed as long as the file name is not a
null string. As an added feature, the number of files owned by this user,
and their total disk size, are computed. These values are displayed when the
procedure completes.

Page | 9

XLNT Getting Started Guide

If you are charged with the administration of your Windows network, you
are probably intimately familiar with the User Manager for Domains facility.
This graphical application allows you to maintain your domains’ security by
managing user accounts and groups and domain security policies. It provides
all of the functions to do the job, coupled with the convenience of a graphical
user interface. However, if you must add large numbers of users to your
domain, using a GUI can be a daunting task. Only one user can be added at
a time and you must be physically present to add each one.

XLNT provides a group of commands that fulfill the functions required for
domain and workstation security management. These commands allow you
to create, modify, delete, and display users, groups and security policies.

The SECURITY CREATE command is used to create users and groups for a
domain or workstation within the Windows security system. Its format is:

SECURITY CREATE/qualifiers type entity

where type is either USER or GROUP and entity is either a group or user
name. Many XLNT commands accept qualifiers, which are simply items of
information supplied to the command, which can alter its operation. For
example, the /DOMAIN qualifier directs the SECURITY CREATE command
to operate on the current domain, rather than the local workstation.

If you enter the following command in interactive mode:

$ security create user testuser /domain /password=test

a user named testuser will be created on the current domain. Testuser will
have a password of test. (Note, there are many other security qualifiers
that can be specified on the command line, but for illustrative purposes we
have limited them to the required ones.) Entering new users in this manner
is easy, but it doesn’t give you any great advantage over the standard GUI.
However, if you have to create large numbers of new users, a different
method may be used.

XLNT solves this problem with a simple command procedure, rather than
you having to sit at your keyboard for hours or resort to writing programs. A
text file containing user names and passwords could be created. If the
names and passwords are separated by a blank space, a command procedure
could be developed that would read the file and add each user name found to
the security database. Assuming that the name of the file containing the
names and passwords was c:\secure\users.dat, the following procedure
would do the job:

Page | 10

XLNT Getting Started Guide

$!
$! Command Procedure to Add New Users
$!
$ open user_file “c:\secure\users.dat”
$ loop:
$ read user_file/end_of_file=done user_record
$ usernam = f$element (0, “ “, user_record)
$ passwrd = f$element (1, “ “, user_record)
$ security create user ‘usernam’/domain/password=’passwrd
$ goto loop
$ done:
$ close user_file
$ exit

This procedure illustrates some of the file commands supplied by XLNT. The
OPEN command opens the file and assigns a symbol, in this case user_file.
This symbol will be used by subsequent XLNT file commands to refer to the
file. The READ command accesses a record in the file and assigns its value
to the symbol defined as user_record. If an end-of-file condition occurs,
control is transferred to the label defined as done. The f$element string
lexical is then used to extract the user name and password from the record.
These are then input to the SECURITY CREATE command, to add the new
user. The procedure will continue to loop in this manner until an end-of-file
is reached, at which point the file will be closed and the procedure will exit.
While this procedure is running, you can be performing other useful tasks.

(Note that this procedure is somewhat simplistic. In a real environment, you
would probably implement some error checking to make sure everything
worked. XLNT provides extensive error checking facilities.)

Windows provides a facility that allows system administrators to execute a
login script to implement common as well as user-specific commands.
Typically these commands, issued when the user logs into the system, help
set up the operating environment for the user. XLNT provides the perfect
language and features for implementing the login script. To do so, create a
small batch file (e.g., login.bat) with the following lines:

cd c:\asci\xlnt
xlnt @\\ntserver\login_script_dir\xllogin.xcp

where ntserver is the machine name of the NT Server, login_script_dir is the
directory on the server where the command procedure is kept, and
xllogin.xcp is the name of the command procedure to execute. The name of

Page | 11

XLNT Getting Started Guide

the batch file that executes the command procedure should be entered into
the Login Script Name field of each user environment profile.

A common requirement for login scripts is to check the groups to which the
user belongs and set up the operational environment. Certain users may
need access to network drives, based on the applications they intend to run.
This information is usually inferred from the user’s group membership. The
XLNT SECURITY SHOW USER command can display complete
information concerning the user’s security profile and provide a
programmatic approach to solving what should be an easy task.

We have barely skimmed the surface of the functionality offered by XLNT.
In subsequent sections, we will go a little deeper into the concepts and
facilities of this powerful language. For a complete and thorough description
of the XLNT language, refer to the XLNT Reference Manual and the online
help. The online help supplied with XLNT is quite comprehensive. Not only
can you use it to look up specific items of interest, but it was designed to be
read sequentially, giving a complete tutorial on the product. To use the help
facility, type HELP at the XLNT command prompt.

Page | 12

XLNT Getting Started Guide

Page | 13

XLNT Getting Started Guide

Back to the Basics

Since its name states that XLNT is an extended language, you might be
wondering what it is extended from. Therefore, a little history may prove
useful at this point.

XLNT was patterned on DCL, the command language developed by Digital
Equipment Corporation for its family of computers. In the early 1970’s,
DEC’s PDP-11 family was the most popular of the 16-bit minicomputers then
on the market. PDP-11 users spanned the spectrum of the computing
industry, from scientific to commercial. Multiple operating systems were
developed for the PDP-11. Among these were RSTS/E (a commercially-
oriented time sharing system); RSX-11 (a family of real-time operating
systems); RT-11; MUMPS; in fact, Bell Laboratories originally designed
UNIX for the PDP-11. Each of these operating systems had its own user
interface, based on unique command languages.

In an effort to reduce the learning curve required by each operating system,
Digital proposed a common command language. They produced a definition
for this new language, called the Digital Command Language Standard, or
DCLS. DCLS interpreters were implemented on several PDP-11 operating
systems. However, the language really hit its stride when Digital introduced
the VAX computer, in 1979.

The VAX was an immediate success. It was a 32-bit processor that gave its
users a virtual address range of 4 gigabytes. Digital provided a single
operating system for the VAX: VMS. The primary user interface to VMS was
the standard command language that DEC had proposed for its previous
generation of computers, although, by now, the language’s name had lost
its trailing ‘S’ and was known simply as DCL.

Over the years, DCL has grown into a robust, mature language familiar to
thousands of world-wide users. After VMS was ported onto the 64-bit
ALPHA machine in the late 1980’s, DCL still remained its primary interface.

With the advent of Microsoft’s cross-platform operating system, Windows,
Advanced Systems Concepts saw the need for a powerful command line
interface as an alternative to the graphical one provided by Windows. XLNT
capitalizes on the strengths of DCL and extends them to fit the unique
demands of a modern, twenty-first century operating system environment.
XLNT supports both x86 and x64 platforms.

Page | 14

XLNT Getting Started Guide

XLNT Command Format

The format of XLNT commands and the rules that govern their format are
called command syntax. Since XLNT is based on DCL, much of its syntax
is derived from that of DCL. XLNT commands generally follow this pattern:

$[label:] verb [parameter…] [/qualifier…]

A label is an optional string of up to 255 characters. It is used only within
command procedures and identifies the targets of control flow statements. A
label may consist of the characters A-Z, a-z, the underscore (_), dollar sign
($), and the digits 0-9. It may not begin with a digit, however. A label is
terminated by a colon (:).

The verb is a word that identifies the command to be executed. It is
required. As long as there is no ambiguity, the verb may be abbreviated.

A command may accept one or more parameters, which are items of data
that you want the command to act on. For example, the COPY command
copies files from one location to another. The name of the file or files to be
copied is a parameter and the target location is another parameter.

$ copy c:\prodfiles*.dat d:\testfiles

For the COPY command, both of these parameters are required. Other
commands allow for optional parameters and still other commands need no
parameters at all. Parameters are separated from each other by spaces. If
the parameter contains spaces, slashes, or other special characters, it must
be enclosed in double quotes (“). Some parameters may be specified as a list
of items. If so, the items in the list must be separated by commas.

Qualifiers allow you to alter the standard operation of the command. In the
SHOW SYSTEM command presented above, the information displayed was
for the local machine. If you are suitably privileged, the SHOW SYSTEM
command will allow you to view the current status of other computers in your
network. You tell the command which system to look at by specifying the
/ON qualifier with the name of the target computer:

$ show system/on=gamma

This command will display the status of the computer named “Gamma”.

Page | 15

XLNT Getting Started Guide

Qualifiers are specified by typing a slash (/) followed by the qualifier name.
The name may be abbreviated as long as it is unambiguous. Some qualifiers
may take a value. If so, the value must be separated from the qualifier
name by an equal sign (=). If the qualifier value contains spaces, commas,
slashes, or other special characters, it must be enclosed in double quotes (“).

Entering XLNT Commands

An XLNT command may be entered in upper or lower case, or both.
Internally, the XLNT interpreter will set all elements of the command line to
upper case before it operates on them. Exceptions to this rule are data
contained within double quotes and the arguments to foreign commands,
which will be explained in a subsequent section. To continue a command on
additional lines, end each line (except the last) with a hyphen (-). You can
split the command at any point where a space or comma would appear.

Page | 16

XLNT Getting Started Guide

Command Procedures

While you most certainly will continue to use the interactive functions of
XLNT, the real power of the language lies in its command procedure facility.
A command procedure is a sequential text file that contains one or more
XLNT commands. You may create a command procedure file with any text
editor. When you invoke a command procedure, XLNT will attempt to open
the file and, if successful, will begin to execute its commands. It will
continue to do so until an EXIT command or the end of file is encountered.

You run a command procedure by entering the @ command, immediately
followed by the command file name:

@c:\myfiles\mycommands.xcp

This command executes the commands contained in the file
mycommands.xcp, located in the myfiles directory of the “c:” device. Note
the file extension of “.xcp”. This extension, which stands for “XLNT
Command Procedure”, is the default file extension for command procedure
files. It will be assumed if you omit the extension when you invoke the
procedure.

A command procedure can be simply a sequence of XLNT commands that you
want to execute repeatedly. If you want to know the current date and time,
the directory you are currently in, and the status of your process, you
might create a command procedure with the following lines:

$! A Simple Command Procedure
$ show time
$ show default
$ show process
$ exit

Note that the first command begins with an exclamation point (!). This
indicates that the line contains a comment. Comments are for
documentation purposes only and have no effect on the procedure’s execution.
An entire line need not be dedicated to a comment. Anything following the
exclamation point is considered part of the comment:

$ show time ! Display the current time

Command procedures can be quite complex and perform many functions. A
command procedure can invoke another command procedure. XLNT will

Page | 17

XLNT Getting Started Guide

allow up to 32 levels of command procedure nesting. Level zero is the
interactive prompt level. As each command procedure is started, the nesting
level will be incremented. When the procedure completes, the level number
is decremented and control is returned to the next higher command level –
either an invoking procedure or interactive level. A LOGOUT command,
executed at any nesting level, will end the XLNT session and cause the
command interpreter process to exit.

All of the commands that you use interactively (and quite a few that you
cannot) can be executed within a command procedure. Command procedures
do not require the physical presence of a human being, as does the use of a
GUI. For example, a command procedure that backs up your disk drives can
be scheduled to run in the off-hours, when no users are around.

Flow of Control

The commands within a procedure are normally executed sequentially, one
line after the other, until the end of the file is reached. Many times,
however, you will find it necessary to alter the flow of control through the
procedure, based on the results of condition testing. XLNT provides a
comprehensive set of commands to accomplish this.

The IF command is the method used by command procedures to make
decisions. It has two forms:

$ if expression then command

and

$ if expression
$ then
$ command
$.
$.
$.
$ else
$ command
$.
$.
$.
$ endif

The first form of the command tests an expression and, if the result is true,
executes the single command on the same line. If the result is false, the
command is skipped. With the second form, the expression is tested and, if

Page | 18

XLNT Getting Started Guide

true, the sequence of commands following the THEN command is executed.
The ELSE command is optional but, if specified and the result of the
expression is false, the commands following the ELSE are executed.

The GOTO command causes a direct branch to be taken to a label within a
command procedure. It can be used to jump around large sections of code
and to implement simple loops. The following command sequence increments
a counter until it exceeds 10, then exits the command procedure:

$ count = 0
$ loop:
$ if count .gt. 10 then goto break_out
$ count = count + 1
$ goto loop
$ break_out:
$ exit

The GOSUB command invokes a subroutine, executes the commands
within it, then returns to the command following the GOSUB.

$ msg = “Displaying process information”
$ gosub show_status
$.
$.
$.
$ exit
$ show_status:
$ write $stdout msg
$ show time
$ show process
$ return

The CALL command is similar to the GOSUB command, except that it
creates a new command level to execute the specified subroutine, just as
though it was a separate command procedure. It is also possible to pass from
one to eight arguments, or parameters, to a called subroutine. The
subroutine refers to these parameters by the symbols P1 through P8.

$ msg = “Displaying process information”
$ call show_status msg
$.
$.
$.
$ show_status: subroutine
$ write $stdout p1

Page | 19

XLNT Getting Started Guide

$ show time
$ show process
$ endsubroutine

The WHILE, UNTIL, and FOR commands can be used to implement
complex loops.

The WHILE commands tests an expression and performs the body of the loop
as long as the expression is true:

$ while expression
$ command
$.
$.
$.
$ endwhile

The UNTIL command tests an expression and executes the commands
within the body of the loop until the expression becomes true:

$ until expression
$ command
$.
$.
$.
$ enduntil

The FOR command executes the commands within a loop a given number of
times, until the specified expression is evaluated as true. Execution of a
FOR command proceeds as follows:

1. The init-command is executed.
2. The expression is evaluated. If false, the commands within the

loop are executed. If true, control is transferred to the first
command following the terminating ENDFOR command.

3. The iterate command is executed and step 2 is repeated.

$ for (init-command, expression, iterate-command)
$ command
$.
$.
$.
$ endfor

Page | 20

XLNT Getting Started Guide

The LEAVE command immediately exits the body of a loop, regardless of the
result of the expression. If encountered out of the body of a loop, the
command is ignored.

The REPEAT command passes control to the next iteration of the WHILE,
UNTIL, or FOR block in which it appears.

 “Login” Command Procedures

XLNT gives you the ability to supply “login” command procedures. These are
command procedures that are executed automatically when you start up, or
“log in” to, the XLNT command interpreter. Two types of login interfaces are
provided: a system-wide login procedure, which is executed whenever
anyone uses XLNT; and a user-specific login procedure, which is executed
only when that specific user starts up XLNT.

The SET PREFERENCES command allows you to control various elements
of your XLNT environment. Among other things, you may use it to specify
the path names of your login command procedures. In order to supply the
path for the system-wide login procedure, you must be a member of the
Administrators group.

Error Handling

When an XLNT command completes processing, it returns a status code
indicating its success or failure. The status code is a 32-bit value, formatted
as follows:

 3 3 2 2 2 1 1
 1 0 9 8 7 6 5 0

 Sev C R Facility Code

where:
Sev is the severity code:

00 - Success
01 - Informational
10 - Warning
11 - Error

Page | 21

XLNT Getting Started Guide

C is the Customer Code Flag
R is a Reserved bit
Facility is the facility code
Code is the status code

The status code is used to set the values of two reserved global symbols:
$STATUS and $SEVERITY1. As the names of these symbols imply, the
value of the status code is inserted into $STATUS and the severity code is
inserted into $SEVERITY.

Each status code corresponds to an XLNT message. If you are operating at
the interactive prompt level, and the command completes in error, the
message will be displayed on your console. You can then take appropriate
action to correct the problem. When a command procedure is running,
however, you are not there to take appropriate action. It is therefore up to
the procedure itself to handle any error conditions that may occur.

An XLNT command procedure has three methods it can employ to handle
errors: it can rely on XLNT’s default error handler; it can allow XLNT to
detect an error, but the procedure can supply its own error handler; it can
disable XLNT’s error checking mechanism and perform this function itself.

XLNT normally checks the status of each command that has completed. If
the status contains an error severity and no other error handler has been
supplied, XLNT will invoke its default error handler. The default error
handler will terminate the command procedure and return the error status.
The default error handler will not be executed if the status code contains a
success, informational, or warning severity code. The following command
procedure excerpt will use the DELETE command to attempt to delete a file.
If the file does not exist, the DELETE command will return a File Not Found
status. This status has a warning severity. Since default error handling is in
place, the command procedure will continue to execute even though the
DELETE command completed unsuccessfully.

$ delete blink.dat
$ show time
$ exit

A command procedure can supply its own error handlers via the ON
command. The format of the ON command is:

ON condition THEN command

1 See the section on SYMBOLS for a discussion of global symbols.

Page | 22

XLNT Getting Started Guide

where condition is the severity level to be handled (i.e., WARNING or
ERROR) and command is the action to be taken when the condition is
raised. If the command specifies ON ERROR then only error severity will
be handled. However, if the command specifies ON WARNING, then both
warning and error conditions will be handled. The following command
procedure is similar to the first, except that the procedure has provided its
own error handler. In this case, if the file to be deleted does not exist, the
File Not Found status will cause the command following the THEN clause of
the ON command to be executed. This is a GOTO command that causes a
direct branch to the label error_handler. This causes the command procedure
to exit with the File Not Found status.

$ on warning then goto error_handler
$ delete blink.dat
$ show time
$ exit
$ error_handler:
$ exit_status = $status
$ exit exit_status

The SET NOON command disables all XLNT error handling. The following
command procedure issues a SET NOON, then attempts to delete a file. The
procedure then explicitly checks the severity of the DELETE command. If
the severity code is 2 or greater (WARNING is binary 10, or decimal 2,
ERROR is binary 11, or decimal 3), the procedure branches off to its error
handler. Otherwise, it continues to execute.

$ set noon
$ delete blink.dat
$ if $severity .ge. 2 then goto error_handler
$ show time
$ exit
$ error_handler:
$ exit_status = $status
$ exit exit_status

Page | 23

XLNT Getting Started Guide

Symbols

Symbols are the means by which you supply data to an XLNT session or
command procedure. Symbols correspond to variables in other programming
languages. Each symbol has four properties: name, datatype, level, and
value.

The symbol’s name identifies it and allows you to refer to it. The name can
consist of any combination of letters, digits, dollar sign ($), and underscore
character (_), however, the name cannot begin with a digit. Symbol names
must be unique within a level.

The symbol’s datatype defines the type of data you can store in the symbol.
XLNT supports several datatypes (see below).

Each symbol has a command level associated with it. The level determines
the symbol’s scope within the XLNT session. Symbols may be defined
globally, in which case they are available to the command level at which
they were created and to all command levels below that. Or a symbol may be
defined as local, in which case it is available only to the current command
level.

The symbol’s value is the actual data that is associated with it.

A symbol can be defined explicitly or implicitly. An explicit definition is the
result of issuing a DECLARE SYMBOL command. An implicit definition
occurs when you specify a non-declared symbol name as the target of an
assignment command.

$ test_symbol = 125

This command creates a new symbol, at the current command level, named
test_symbol. Because the value being assigned is numeric, test_symbol will
be created as an integer symbol. An integer is a signed 32-bit numeric
value. Once a symbol is defined, it can be used in subsequent commands.

$ new_symbol = test_symbol + 10

The above command combines an assignment statement with a numeric
expression. It adds 10 to the value of test_symbol (125), creates a new
symbol called new_symbol, and stores the result of the add operation into
new_symbol. New_symbol now contains an integer value of 135, but the
value of test_symbol remains unchanged.

Page | 24

XLNT Getting Started Guide

A symbol’s value can be modified by a new assignment command. If it is not
an explicitly declared symbol, its datatype can also be changed.

$ test_symbol = “This is a string”

This command redefines test_symbol as a string symbol. The previous value
of test_symbol is no longer available and its datatype has been changed.

The following command creates an implicit global symbol:

$ test_symbol == “This is a global string”

The double equal sign (= =) is the notation for global assignment. This
symbol does not replace the previous version of test_symbol, since they both
exist at different command levels.

Integer and string are the only datatypes that can be assigned to implicitly
defined symbols.

To explicitly define a symbol, use the DECLARE SYMBOL command. The
format of this command is as follows:

DECLARE SYMBOL datatype name[=initial-value] [options…]

Many more datatypes can be assigned to explicitly declared symbols. The
following table presents each datatype’s keyword and description.

Datatype Description
INTEGER 32-bit signed binary value
LONG 32-bit signed binary value
SLONG 32-bit signed binary value
ULONG 32-bit unsigned binary value
DWORD 32-bit unsigned binary value
WORD 16-bit signed binary value
SWORD 16-bit signed binary value
UWORD 16-bit unsigned binary value
BYTE 8-bit signed binary value
SBYTE 8-bit signed binary value
UBYTE 8-bit unsigned binary value
STRING Character String value
HANDLE Handle
VOID (functions only) Void Function Argument

Page | 25

XLNT Getting Started Guide

The next two commands define, in turn, a local, 32-bit unsigned symbol and
a global 16-bit signed symbol containing an initial value of 100:

$ declare symbol dword BigValue
$ declare symbol word Counter=100 global

The datatypes of explicit symbols cannot be changed by subsequent
assignment statements:

$ declare symbol long x_size
 .
 .
 .
$ x_size = 300
$ x_size = “A new value”

In the previous command sequence, the last command would fail because it
attempted to assign a string value to an explicitly-declared numeric symbol.

Page | 26

XLNT Getting Started Guide

Symbols have many uses in XLNT. Among the most common are:

• as a synonym for a command or command line
• as a variable in a command procedure
• as a value for a declared function or lexical
• to represent file and data record objects in the I/O related

commands
• as input arguments to command procedures

In addition to the symbols you define, XLNT provides the following
permanent symbols (which are available at any command level):

$JOBID - current batch job number
$LOCAL_MACHINE - local computer name string
$LOGIN - default login directory string
$PID - current process identifier
$REMOTE - XLNT remote login flag
$SEVERITY - severity level of last completed operation
$STATUS - status of last completed operation
$STDERR - handle of STD_ERROR device
$STDIN - handle of STD_INPUT device
$STDOUT - handle of STD_OUTPUT device
$USERNAME - current username string

The following three permanent symbols are present to provide VMS
compatibility:

SYS$ERROR - handle of STD_ERROR device ($STDERR)
SYS$INPUT - handle of STD_INPUT device ($STDIN)
SYS$OUTPUT - handle of STD_OUTPUT device ($STDOUT)

Command Shortcuts

A common use for symbols is as abbreviations for long XLNT command
names. For example, you can equate the symbol ST to the XLNT command
SHOW TIME:

$ ST = “SHOW TIME”
$ ST
$ Sat 07-Jul-1997 11:47:27.416

Convenient names can be assigned to frequently used commands. The SET
DEFAULT command is the XLNT method of changing directories. As
described above, the $LOGIN symbol is always set to your default login

Page | 27

XLNT Getting Started Guide

directory. You may then define a symbol named HOME to always return you
to your home directory:

$ home = “set default $login”

The use of symbols in this manner is limited only by your imagination.

Abbreviating Symbols

Symbol names may be abbreviated through use of the asterisk (*)
character. The following example creates the symbol WHAT to invoke the
SHOW SYSTEM command. The symbol can be abbreviated as WH or WHA:

$ wh*at = “show system”

Foreign Commands

If you equate the file name of a non-XLNT executable to a symbol, you can
run the executable image by typing the symbol name. A symbol that runs an
executable image is referred to as a foreign command. A foreign command is
an executable image that is not recognized by the command interpreter as an
XLNT command.

The formats for defining a foreign command are as follows:

symbol-name :=[=] $image-file-name
symbol-name =[=] “$image-file-name”

Note that the dollar sign ($) is required for foreign command definition.
There must be no space between the dollar sign and the file name.

If you have an executable named myprogram.exe that resides in the myfiles
directory of the C: device, you can define a foreign command for it as follows:

$ doit := $c:\myfiles\myprogram.exe

Thereafter, whenever you type doit at an XLNT command prompt, the
myprogram.exe executable will be run.

If a foreign command requires arguments, they can be entered on the same
line as the command. Contrary to other XLNT command lines, these
arguments strings will not be changed to upper case. They will remain as

Page | 28

XLNT Getting Started Guide

you entered them. It is up to the foreign command’s program to obtain these
arguments and perform any parsing of the command line, itself.

XLNT also supports Automatic Foreign Command detection. This means
that if you enter a command that would otherwise be invalid under XLNT,
the XLNT interpreter will scan for “command.EXE” or “command.XCP” files
to execute as though they were foreign commands. The following directories
are searched in the following order:

• the XLNT installation directory
• the current directory
• the 32-bit Windows system directory
• the 16-bit Windows system directory
• the Windows directory
• the directories listed in the PATH environment variable

If you wish to run the NOTEPAD text editor, and Automatic Foreign
Command detection is enabled, you may do so by simply typing:

$ notepad

Automatic Foreign Command detection can be enabled or disabled on an
individual user basis. The SET PREFERENCE command is available to
customize the XLNT environment to your individual preferences. To enable
Automatic Foreign Command detection, type

$ set preference/autoforeign

To disable it, type:

$ set preference/noautoforeign

By default, Automatic Foreign Command detection is enabled.

Page | 29

XLNT Getting Started Guide

Structures

A structure is a collection of fields, of possibly diverse data types, that are
related in some manner. For example, an employee record consisting of the
employee’s name, Social Security number, address, salary, etc., could be
defined as a structure. Most programming languages provide a mechanism
for defining data structures. In XLNT, this is accomplished by the
STRUCTURE / ENDSTRUCTURE commands.

Consider the following XLNT command sequence:

structure Xyz
word XyzType
word XyzSize
dword XyzIdent
string XyzName 32

endstructure

These commands define a structure named Xyz that consists of four fields.
Each field is also known as a member of the structure. The four members are
XyzType and XyzSize, both of which are defined as words (16-bit signed
values); XyzIdent, a dword (32-bit unsigned value); and XyzName, a 32-
byte character string. As specified above, the Xyz structure definition is
local to the command level in which it has been defined. To make the
definition global to the entire XLNT session, add the global parameter,
following the structure name:

structure Xyz global
word XyzType
word XyzSize
dword XyzIdent
string XyzName 32

endstructure

Once a structure has been defined, it becomes an implicit XLNT datatype.
To use this structure type, you must create an instance of the structure. To
do so, use the standard XLNT DECLARE SYMBOL command:

declare symbol Xyz X1 initialize,global

The above command creates an XLNT symbol named X1 of datatype Xyz.
Notice the inclusion of the initialize and global keywords. The latter simply
creates X1 as a global symbol. The initialize keyword sets the members of the

Page | 30

XLNT Getting Started Guide

structure to initial values: numeric fields are set to zero, string fields are set
to spaces. Both keywords are optional.

To reference the individual members of a structure, specify the instance
name, followed by the field reference character (|), followed by the field
name. The following commands assign values to the members of the X1
structure instance:

X1|XyzType = 5
X1|XyzSize = 40
X1|XyzIdent = 100
X1|XyzName = “John Smith”

Because they are implicit datatypes, structure definitions may be included
as the datatypes of members of other structures:

structure Abc
word AbcType
word AbcSize
Xyz AbcXyz
string AbcAddress1 20
string AbcAddress2 20

endstructure

Note that one of the members of structure Abc is a field described as a
datatype Xyz. This includes all of the members of structure Xyz as part of
structure Abc. The definition of structure Xyz must have been provided
before its inclusion in the second structure. To reference the members of a
“structure within a structure”, it is necessary to fully qualifiy their names:

declare symbol Abc A1
A1|AbcType = 10
A1|AbcSize = 84
A1|AbcXyz|XyzType = 5
A1|AbcXyz|XyzSize = 40
A1|AbcXyz|XyzIdent = 100
A1|AbcXyz|XyzName = “John Smith”
A1|AbcAddress1 = “102030 4th Street”
A1|AbcAddress2 = “Hoboken, NJ”

To remove a structure instance, simply delete the symbol:

delete/symbol A1

Page | 31

XLNT Getting Started Guide

Lexical Functions

Lexical functions are built-in XLNT routines that can be invoked by
command procedures to perform many useful functions. Lexical functions are
available to manipulate strings, perform various date and time conversions,
obtain system information, and many other services.

The results of a lexical function can be assigned to a symbol or used directly
in many XLNT commands. In this example, the F$GETSYI lexical is used
to obtain the operating system version and build number:

$ write $stdout “Operating System: ‘’f$getsyi(“VERSION”) Build: ‘’f$getsyi(“BUILD_NUMBER”)”

result:

Operating System: Windows NT 5.0 Build: 2195

The following list details the name and purpose of some of the XLNT lexicals:

F$ADDREGISTRY - adds a subkey and value to the registry
F$CHANGEREGISTRY - modifies a value in the registry
F$CHECKLIBRARY - determines if a specific DLL has been loaded
F$CVSI - converts specified bits of a character string to a signed
integer
F$CVTIME - performs time and date conversions
F$CVUI - converts specified bits of a character string to an unsigned
integer
F$DELETEREGISTRY - deletes values in the registry
F$DIRECTORY - returns the current directory string
F$EDIT - performs string editing
F$ELEMENT - extracts one element from a string of element
F$ENUMDOMAIN - enumerates domain information
F$ENUMMACHINE - enumerates machine server information
F$ENUMSHAREPOINT - enumerates network sharepoint information
F$ENVIRONMENT - returns information on command procedure
environment
F$EXTRACT - extracts characters from a string
F$FILE_ATTRIBUTES - returns information on specified file
F$FORMAT - formats a character string
F$FORMATDATE - returns a date string in various formats
F$FORMATTIME - returns a time string in various formats
F$FREELIBRARY - unloads a DLL
F$GETVARIABLE - retrieves an environment variable
F$GETDVI - retrieves device information

Page | 32

XLNT Getting Started Guide

F$GETJPI - retrieves process information
F$GETSYI - retrieves system information
F$INTEGER - returns the integer equivalent of the specified
expression
F$LENGTH - returns the length of a string
F$LOADLIBRARY - loads a DLL
F$LOCATE - locates a substring within a string
F$LOOKUPREGISTRY - looks up a key and value in the registry
F$MESSAGE - converts a status code to a formatted message string
F$MODE - returns current command mode
F$MSGBOX - creates and displays a message box
F$PARSE - parses file specifications
F$PID - obtain a process identifier
F$READEVENT - reads entries from the Windows NT Event Log
F$REPLACE - searches for and replaces a substring within a string
F$REPORTEVENT - enters an event into the Windows NT Event Log
F$SEARCH - searches directories
F$SERVICE_STATUS - determines the status of a Windows NT
service
F$STRING - returns the string equivalent of the specified expression
F$TIME - returns current date and time as a string
F$TYPE - returns the datatype of a symbol
F$VERIFY - indicates the command procedure verification level

User Functions

Besides the built-in functions provided by the lexical commands, XLNT
allows you to invoke your own functions from within an XLNT session. This
feature is enabled through the use of the DECLARE FUNCTION command.

DECLARE FUNCTION datatype name library arguments,...
[options]

The datatype parameter indicates the datatype that the function will return.
You may supply one of the supported XLNT datatypes (see the section on
symbols for a list of these datatypes).

The name parameter is the name of the function within the specified library.
It must not conflict with another symbol name. If the name is case sensitive,
it must be enclosed in double quotes (“).

Page | 33

XLNT Getting Started Guide

The library parameter is the filename portion of the DLL that contains the
function. For example, kernel32 for kernel32.dll.

The arguments parameter contains a list of the datatypes for each argument
to the function. This parameter is optional.

The options parameter lists all options which further modify the handling or
declaration of the function. Currently, the options available are GLOBAL,
CDECL, and STDCALL. By default, function declarations are available to
their own command level. The GLOBAL parameter makes them available
throughout the XLNT session. CDECL is the default calling mechanism used
by XLNT when invoking user functions. STDCALL is used when calling
WIN32 API functions, and must be specified for them.

The following sequence of XLNT commands uses the Win32 SetConsoleTitle
api function to change the name of the console window to “My Console”. The
SetConsoleTitle function resides in the “kernel32.dll” dynamic link library,
so the first thing the command procedure does is to load the library. There
are two forms of the SetConsoleTitle api: one for setting straight ASCII
characters and one for wide characters. We will use the ASCII for, hence the
“SetConsoleTitleA” function name. This function returns an unsigned long
status and takes a character string as input.

 $ k32 = f$loadlibrary(“c:\winnt34\system32\kernel32.dll”)
 $ declare function ulong “SetConsoleTitleA” “kernel32” string stdcall
 $ declare symbol ulong stat
 $ stat = SetConsoleTitleA (“My Console”)

Page | 34

XLNT Getting Started Guide

Product Support

This guide has presented a brief introduction to the XLNT command and
scripting environment. For more detailed and thorough information, consult
the following :

XLNT Reference Manual, available from Advanced Systems
Concepts, Inc.
XLNT Online Help - type HELP at the XLNT prompt

XLNT is a fully-supported product of Advanced Systems Concepts, Inc.
ASCI provides many support programs to assist XLNT evaluators and
customers. You can contact us in any of the following methods:

Telephone: +1-973-539-2660

Fax: +1-973-539-3390

Sales: sales@advsyscon.com

This E-mail destination should be used for sales, pricing and other
sales-related questions.

Technical: ascisupportteam@advsyscon.com
This E-mail destination should be used for technical product
assistance.

Web Site: http://www.advsyscon.com
This destination represents Advanced Systems Concepts’ world-
wide web site. Product information, downloads and other requests
can be satisfied by visiting this site.

Page | 35

XLNT Getting Started Guide

Appendix A - Login Script

This command procedure is designed to be executed during Windows login. It
will check the user account to determine which group(s) he or she belongs to.
Based on this information, appropriate drive shares can be established.
(Note, this command procedure is included for historical purposes, only. As of
XLNT V4, Windows NT V4/95/98/Me are no longer supported. Only Windows
2000 and above.)

$! XLLOGIN.XCP
$! Version 1.5
$! Copyright 1997-2006, Advanced Systems Concepts
$! All Rights Reserved
$!
$! Author: ASCI
$! Created: 07-22-97
$! Modified: 07-25-97
$!
$!
$! Instructions:
$! In the variables section, change the ntmachine variable value
$! NT-MACH, to the name of the NT-MACHINE that is running
$! XLNTSERV. For ease this should be the Domain Controller.
$! See notes for more details
$! Right now the script checks if the user is in the Administrators
$! Group. If so, it will do the code that is in the if statement
$! Change this commented code to anything that you want to
$! do once the group is checked. Also see the notes on this
$! section for what to do for checking for multiple groups or
$! also adding common code for all groups.
$!
$! Description:
$! This procedure uses RPC Services Found in Service Pack 2
$! of XLNT to lookup the account information of a person that
$! is logged into an NT domain and determine if they are in
$! a certain group or not. Based on that group the script can
$! map a drive to the login name of the user or any other
$! drive that the administrator wishes.
$! This script works on Logging in from a Windows NT or '95 machine.
$!
$! Advanced Features:
$! This script will first determine if the Machine is Windows NT
$! or Windows '95. It will run the appropriate SECURITY command

Page | 36

XLNT Getting Started Guide

$! based on the operating system.
$!
$! Notes:
$! There is a problem when the machine that XLNTSERV is a workstation
$! that has a local user account of the same name that the user
$! is logging into the domain. This is a problem only with Windows '95
$! machines and the work around for it is to make just simply pick the
$! primary domain controller for the /on= parameter in the security
$! command
$!
$!
$! **
$! **
$! VARIABLES
$!
$ ntmachine = "\\NT-MACH"
$!
$! **
$! **
$!
$ echo = "write $stdout"
$ set noverify
$ set message /nomessage
$ on error then goto END_OF_SCRIPT
$ cls
$!
$! Here we are going to check what type of operating system we have and
$! determine which SECURITY command to use
$!
$ if f$getsyi("platform") .nes. "Windows NT"
$ then
$ echo "Invalid ”
$ sec/out=sec.xt/noformat show user /win95 /on="''ntmachine'"
$ else
$ echo "Logging in from a Windows NT Workstation"
$ sec/out=sec.txt/noformat show user /domain
$ endif
$!
$! This next line looks up the current user on the domain to obtain user info
$!
$y=1
$!
$! Now we are going to obtain the user name, local groups, and global groups
$! If you would like more information than this, just add the appropriate
$! label with a variable name. Also, tell the user we are doing it.
$!

Page | 37

XLNT Getting Started Guide

$echo "Verifying User Information, Please Wait..."
$ open secfile sec.txt
$!
$ while y .eq. 1
$ read/end_of_file=loop_exit1 secfile infile
$ if F$LOCATE("User Name",infile) .ne. F$LENGTH(infile) then userline = infile
$ if F$LOCATE("Local Groups",infile) .ne. F$LENGTH(infile) then localgroups =
infile
$ if F$LOCATE("Global Groups",infile) .ne. F$LENGTH(infile) then globalgroups
= infile
$ endwhile
$!
$ loop_exit1:
$!
$! We are going to close the file and delete it so that the information is not saved
$! You can also save this information to a log file or other means of server
logging
$!
$ close secfile
$ del sec.txt
$!
$!
$! We have to parse the user name from the information so that we can use
$! it as a variable for drive mappings or any other comparisons
$!
$usertemp = "''f$element(1,"=",userline)'"
$userlen = f$length(usertemp) - 1
$usersname= f$extract(1,userlen,usertemp)
$!
$! Code to look for a certain local or global group
$! if you only want it to search for local or global groups just
$! comment out or delete one of the if statements. Also, if you would like
$! to do things for multiple groups, just copy and paste the block below
$! labeled GROUP SEARCH AND PROCESS and change the name of
SGROUP to a group
$! of your choice
$!
$! **
$! *************************** GROUP SEARCH AND PROCESS

$! **
$!
$ SGROUP = "Administrators"
$found = 0
$ if F$LOCATE("''SGROUP'",localgroups) .ne. F$LENGTH(localgroups)
$ then

Page | 38

XLNT Getting Started Guide

$ found = 1
$ endif
$ if F$LOCATE("''SGROUP'",globalgroups) .ne. F$LENGTH(globalgroups)
$ then
$ found = 1
$ endif
$
$!
$! Do something here if the name was in a user group
$!
$ if found .eq. 1
$ then
$! Add code here to do something if the person is in an administrators group
$ endif
$!
$! **
$! *************************** GROUP SEARCH AND PROCESS

$! **
$!
$! COMMON TO ALL LOGON USERS
$!
$! Add code here to do something that is generic for all users like
$! mapping drives for showing the user specific computer or network information
$!
$END_OF_SCRIPT:
$ exit
$ lo

Page | 39

	A Quick Overview
	Back to the Basics
	Command Procedures
	where:
	Structures
	Lexical Functions
	User Functions
	Product Support
	Appendix A - Login Script

